

SKML 2006-2 MYCOLOGY

EVALUATION

Sample A

Microsporum gypseum

Pathogenicity:

M. gypseum is a geophilic fungus which can cause infections in animals (cats, dogs, rodents and horses) and humans, especially in children having frequent contacts with soil. It can infect the scalp (tinea capitis, invaded hairs show an ectothrix infection with large spores (Fig. 3)) and the skin in various body parts (tinea corporis) (2).

Distribution: World-wide (1).

Lab diagnosis:

1. Macroscopic morphology:

On Sabouraud agar at 30°C: colony growing rapidly (6-7 days), flat, powdery, cinnamon-tan; reverse yellowish-buff, sometimes with pinkish tinges (Fig. 1).

- 2. Microscopic morphology (Fig. 2):
- Macroconidia:

Numerous, in large clusters, fusiform, 3-6(-8) compartments, thin-walled (septal- and outer cell wall thickness are the same) and set with small prickles.

Microconidia:

Smooth, thin-walled, club-shaped.

- 3. Supplementary test:
 - Hairperforation test: positive (Fig. 4)

Fig. 1. Macroscopic morphology on Sabouraud agar (front)

Fig. 3 Ectothrix invasion of hair

Fig. 2. Microscopic morphology

Fig. 4 Positive hair perforation test

Difference between *M. gypseum* and other species are shown below.

Strain	Macroscopic morphology	Microscopic morphology	Supplementary test(s)
M. gypseum	Flat, powdery, cinnamon-tan;	Macroconidia: numerous, in large	Hair perforation test:
	reverse yellowish-buff,	clusters, fusiform, multi-celled,	positive
	sometimes with pinkish tinges	thin-walled and set with small	
		prickles.	
		Microconidia: Smooth, thin-	
		walled, club-shaped.	
M. persicolor	Expanding, powdery to fluffy,	Macroconidia: thin-walled,	
	pale yellowish-buff to pinkish-	rough-walled at the tip, cigar-	
	buff,; reverse ochraceous.	shaped, 4-7 celled.	
		Microconidia: in dense clusters,	
		spherical.	
M. praecox	Moderately expanding, powdery,	Macroconidia: moderately thin-	Hair perforation test:
	with concentric, cloudy growth	walled, echinulate, lanceolate	negative
	waves, buff; reverse yellow-	with narrow apex, 6-9 walled.	
	orange	Microconidia: when present, in	
		orthotropic arrangement,	
		pyriform.	
M. canis	Spreading, thin, wooly, strongly	Macroconidia: 6-12 celled, rough	
	radiating, greyish- to tannish-	walled, with thick cell walls and	
	white; reverse deep ochraceous-	thinner septa, spindle shaped,	
	yellow	with slightly bent rostrate apex.	
Trichophyton sp.	Waxy, glabrous or cottony,	Macroconidia: 2-or multi-celled,	
	white, pinkish, yellowish or	generally thin-walled, frequently	
	cream-coloured to brownish;	absent, smooth-walled, hyaline,	
	reverse cream-colored, brown,	cylindrical, or clavate to cigar-	
	red, violet or yellow	shaped	

Sample B

Trichophyton erinacei

Also known as Trichophyton mentagrophytes var. erinacei.

Pathogenicity:

T. erinacei is a zoophilic fungus associated with hedgehogs and the epidermal mites which they often harbour. Human infections occur most frequently on the exposed parts of the body; but tinea of the scalp and nails can also occur. Invaded hairs show an ectothrix infection (Fig. 3) (6)

Distribution:

Europe and sporadic New Zealand (6).

Lab diagnosis:

1. Macroscopic morphology

On Sabouraud agar at 30°C: colonies expanding, cottony or farinose (mealy), white; reverse becoming bright lemon yellow (Fig. 5 and 6) (1).

2. Microscopic morphology

Macroconidia:

When present, cylindrical to clavate, variable in size, 2-6 celled (Fig. 8) (1). Microconidia:

Abundant, slender, clavate, at right angles alongside hyphae, first widely interspaced, finally closer together (Fig. 7) (1).

Arthroconidia common (1)

Fig. 5. Macroscopic morphology on Sabouraud agar (front)

Fig. 7. Microscopic morphology Microconidia

Fig. 6 Macroscopic morphology on Sabouraud agar (reverse)

Fig. 8. Microscopic morphology Macroconidia

Difference between *T. erinacei* and other species are shown below.

Strain	Macroscopic morphology	Microscopic morphology	Supplementary test(s)
T. erinacei	Expanding, cottony or farinose	Macroconidia: when present,	Hair perforation test:
	(mealy), white; reverse becoming	cylindrical to clavate, variable in	+, -
	bright lemon yellow	size, 2-6 celled.	Urease: +, weak
		Microconidia: abundant, slender,	
		clavate, at right angles alongside	
		hyphae, first widely interspaced,	
		finally closer together	
T. mentagrophytes	Powdery to floccose, cream-	Macroconidia: 3-8 celled,	Hair perforation test:
	coloured to yellowish-buff;	smooth- and thin-walled, clavate	+, -
	reverse ochre to red-brown,	to cigar-shaped, usually sparse.	Urease: +
	occasionally yellow, or dark	Microconidia: in dense, grape-	
	brown, occasionally yellow	like clusters	
T. tonsurans	Variable; mostly suede-like white	Macroconidia: when present,	Hair perforation test: -
	to greyish, yellowish or	variable, often somewhat thick-	Urease: -,+
	brownish-buff, sometimes with	walled, 2-6 celled, cylindrical to	
	pinkish or pale ochraceous	cigar-shaped.	
	centre; reverse mahogany-red,	Microconidia: variable size,	
	yellow to brown	produced in abundance, formed	
		on loosely clustered branches or	
		thickened terminal hyphae.	
T. rubrum	Fluffy to cottony, white; reverse	Macroconidia: mostly absent,	Hair perforation test:
	wine-red to olive, sometimes	when produced thin-walled,	negative
	yellow	cylindrical to cigar-shaped.	
		Microconidia: peg-shaped to	
		pyriform, sessile alongside	
		undifferentiated hyphae.	
T. verrucosum	Growing very slowly, heaped or	Sporulation absent or reduced.	Hair perforation test: -
	button-like, glabrous, later	Macroconidia: 4-7 celled,	Urease: +
	slightly velvety, cream-colored or	smooth, thin walled	
	greish-white; reverse pale-cream-	Microconidia: ovoidal to	
	or salmon-coloured.	pyriform	
		Chlamydospores common in	
		fresh isolates	
Microsporum sp.	Slow or rapid growth, powdery,	Macroconidia: mostly arising in	
	cottony to glabrous, white, buff	groups at acute angles, 2- to	
	to yellowish; reverse cream-	several-celled, thin- to thick-	
	colored, reddish or yellowish.	walled, echinulate to roughened,	
		spindle- or cigar-shaped	
		Microconidia: solitary, 1-celled,	
		smooth- and thin-walled, ovoidal	
		to clavate	

Sample C Geotrichum candidum

The yeast Geotrichum is found in soil, water, air, and sewage, as well as on plants, in cereals, and dairy products. It is also found as part of normal human flora and is isolated from sputum and feces. Apart from its clinical significance, there are very recent claims on environmental damages that Geotrichum might have caused (see article Telegraph). It has been blamed for destroying the aluminium and data-storing polycarbonate resin that are found in the structure of compact discs. This in turn led to discoloration of the disc, with the disc becoming partly transparent. The exact role of Geotrichum in this destruction process requires confirmation (5).

The genus Geotrichum includes several species. The most common one is Geotrichum candidum.

Pathogenicity:

Geotrichum sp. is a colonizer of the intestinal tract and may cause opportunistic infections in immunocompromised host; these infections are referred to as geotrichosis. The infections are usually acquired via ingestion or inhalation. Bronchial and pulmonary as well as disseminated infections and fungemia due to Geotrichum have been reported. It has also been isolated from infections resulting from trauma (5).

Distribution:

Worldwide

Lab diagnosis:

1. Macroscopic morphology

On Sabouraud agar at 30°C: colonies rapidly growing, white, dry, powdery to cottony (Fig. 9). When disturbed on the surface, the colony becomes yeast-like or slimy. The optimal growth temperature is 25°C. Most strains either do not grow at all or grow weakly at 37°C

2. Microscopic morphology

Arthroconidia and coarse true hyphae are observed. Blastoconidia, conidiophores and pseudohyphae are absent. Arthroconidia $(6-12x3-6 \mu m)$ are unicellular, in chains, hyaline, and result from the fragmentation of undifferentiated hyphae by fission through double septa (Fig. 10). They are either rectangular in shape or rounded at the ends resembling the barrel shape. (5)

Fig. 9 Macroscopic morphology on Sabouraud agar (front)

Fig. 10 Microscopic morphology

Difference between *G. candidum* and other species are shown below.

Strain	Macroscopic morphology	Microscopic morphology	Supplementary test(s)
G. candudum	Rapidly growing, white, dry,	Arthroconidia (6-12x3-6 µm)	Most strains either do
	powdery to cottony	are unicellular, in chains,	not grow at all or grow
		hyaline	weakly at 37°C
			Urease: -
G. klebahni	White colored.	Arthroconidia	
Synonym: G.			
penicillatum			
G. capitatum	Moderate growth, whitish,	Rectangular arthroconidia	Growth at 40°C: +
	butyrous	often present	
Candida sp.	Slimy or dry, white to cream-		Most species growth
_	colored.		37°C: +
Trichosporon sp.	Initially yeast-like, later becoming	Arthroconidia: abundant.	Urease: +
	dry.		

Sample D

Malassezia pachydermatis

Malassezia is a lipophilic yeast found on skin and body surfaces of humans and animals. It has been shown that colonization with Malassezia may occur as early as the neonatal period. It is a member of the normal skin flora in as much as 90% of adults and may occasionally cause superficial and deep mycoses.

There are seven proposed species in the genus Malassezia based on molecular, morphological, and biochemical profiles. The most common and well-known species are *Malassezia furfur* and *Malassezia pachydermatis*.

This species is primarily associated with animals, most notably with canines, but has also been implicated in a hospital outbreak in a neonatal unit (5).

Pathogenicity:

Malassezia infections are mostly endogenous and originate from the colonized skin. They may occur in otherwise healthy individuals as well as immunocompromised hosts, such as bone marrow transplant recipients, patients with cancer or AIDS (5)

Distribution: Worldwide

Lab diagnosis:

1. Macroscopic morphology

On Sabouraud agar at 30°C: Colonies are cream to yellowish, and typically smooth to slightly wrinkled with lobate margins (Fig. 11). *M. pachydermatis* is the only non-lipid dependant isolate in the genus Malassezia. Adequate growth occurs without addition of olive oil but some strains may exhibit enhanced growth when olive oil is added.

2. Microscopic morphology

Yeast cells with daughter cells being produced from a very broad base and leaving behind distinct collarettes (Fig. 12).

3. Supplementary test

Differentiated from other Malassezia sp. by its ability to grow on routine laboratory media without the addition of an oleic acid source

Fig. 11 Macroscopic morphology

Fig. 12 Microscopic morphology

Difference between *M. pachydermatis* and other species are shown in subjoined table.

Strain	Macroscopic morphology	Microscopic morphology	Supplementary test(s)
M. pachydermatis	Cream to yellowish, and	Yeast cells with daughter	Ability to grow on routine
	typically smooth to slightly	cells being produced from	laboratory media without
	wrinkled	a very broad base; budding	the addition of an oleic
		monopolair	acid source
			Growth 40°C: +
M. furfur	Cream-colored to yellowish,	Budding percurrent; buds	Lipid dependent; no
	convex or slightly wrinkled,	nearly as wide as the	growth on routine
	glistering or dull; margin	mother cell; budding	laboratory media without
	entire or lobed on media with	monopolair.	the addition of an oleic
	lipids.		acid source.
			Growth 40°C: -
Candida sp.	Slimy or dry, white to cream-	Budding cells and/or	
	colored.	pseudomycelium present;	
		budding multilateral.	
Zygosaccharomyces	Cream colored, moist	Budding multilateral.	
sp.			
Include several			
species of			
Saccharomyces and			
Torulaspora			
Trichosporon sp	Initially yeast-like, later	Arthroconidia: abundant.	
	becoming dry.		

The inquiry shows that of all participants:

- 20% identify Malassezia as non-Malassezia sp.
- 12% do not perform Malassezia culturing. From this 12% 57% identifies *M. pachydermatis* as non-Malassezia. *M. pachydermatis* growth on Sabouraudagar is identified with the regular yeast identification methods, this lead to mis-identifications.
- 6% only perform microscopic examination of clinical material in case of Malassezia request; this lead to false negative results.
- 80% perform dermatophyte identification according to macroscopic- and microscopic descriptions and literature; 2% use PCR techniques; 18% did not indicate the sort of dermathophyte identification.
- 15% identify Microsporum as Trichophyton sp.; from this 15% 63% did not indicate the sort of dermatophyte identification.
- 2% identify Trichophyton as Microsporum sp..
- 7% mis-identify Geotrichum; these participants use Auxacolor 2-, Api Candida- and Vitek system for yeast identification. 16% of all participants did not indicate the sort of yeast identification they used.

Literature

- 1. de Hoog GS, Guarro J, Gené J, Figueras MJ. Atlas of clinical fungi. 2nd ed. Nederland: Centraal bureau voor schimmelcultures, 2000
- 2. Andreoni S., Farina C., Lombardi G. Medical mycology atlas. GRAFIK@rt srl Paderno Dugnano, 2004
- 3. Larone DH. Medically important fungi. ASM Press, 2002
- 4. Kane J., Summerbell R., Sigler L., Krajden S., Land G. Laboratory handbook of dermatophytes. Star publishing company, 1997
- 5. http://www.doctorfungus.org
- 6. http://www.mycology.adelaide.edu.au/

The macroscopic descriptions is according to the literature above. This may differ from your results that can depend on the composition of the Sabouraud agar plates.

Brun S, Bouchara JP, Bocquel A, Basile AM, Contet-Audonneau N, Chabasse D. Evaluation of five commercial Sabouraud gentamicin-chloramphenicol agar media. Eur. J. Clin. Microbiol. Dis. 2001; 20:718-723

Telegraph.co.uk

SCIENTIST FINDS FUNGUS THAT EATS THROUGH COMPACT DISCS

By Robert Uhlig, Technology Correspondent (Filed: 18/06/2001)

FIRST there was the computer virus. Now scientists have found a fungus that eats compact discs.

Victor Cardenes, of Spain's leading scientific research body, stumbled across the microscopic creature two years ago, while visiting Belize. Friends complained that in the hot and sticky Central American climate, a CD had stopped working and had developed an odd discoloration that left parts of it virtually transparent.

Dr Cardenes and colleagues at the Superior Council for Scientific Research in Madrid discovered a fungus was steadily eating through the supposedly indestructible disc. The fungus had burrowed into the CD from the outer edge, then devoured the thin aluminium layer and some of the data-storing polycarbonate resin.

Dr Cardenes said: "It completely destroys the aluminium. It leaves nothing behind." Biologists at the council had never seen this fungus, but concluded that it belonged to a common genus called geotrichum.

Philips, the Dutch electronics company that invented the compact disc, said it believed the Belize case was probably a freak incident caused by extreme weather conditions.